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Abstract
Introduction Large administrative healthcare databases can be used for near real-time sequential safety surveillance of 
drugs as an alternative approach to traditional reporting-based pharmacovigilance. The study aims to build and empirically 
test a prospective drug safety monitoring setup and perform a sequential safety monitoring of rofecoxib use and risk of 
cardiovascular outcomes.
Methods We used Danish population-based health registers and performed sequential analysis of rofecoxib use and cardio-
vascular outcomes using case–time–control and cohort study designs from January 2000 to September 2004. Each monitoring 
period added 6 months of data until the end of the study period. In the case–time–control study, incident cases of myocardial 
infarction (MI) and ischemic stroke were identified and matched with up to five time controls on age, sex, and calendar time. 
Exposure status on the date of diagnosis was assessed using a 60-day focal window, with reference windows 120, 180, and 
240 days prior to the diagnoses. In the cohort study, incident users of rofecoxib were matched up to 1:4 with ibuprofen users 
(active comparators) using high-dimensional disease risk scores and were followed for 60 days.
Results The earliest association between rofecoxib use and the risk of MI was seen in study period 2 for case–time–control 
design (OR 1.42, 95% CI 1.04–1.93) and in study period 7 for the cohort study design (RR 1.22; 95% CI 1.02–1.47).
Conclusions Our prospective drug safety monitoring setup showed that the risk of MI could have been detected 3.5 years 
before the ultimate market withdrawal of rofecoxib. However, further research is needed to validate this approach.

Key Points 

To test a prospective drug safety monitoring setup, 
we performed sequential monitoring of rofecoxib use 
and the risk of cardiovascular outcomes using the case–
time–control and cohort study designs.

The study showed that the risk of myocardial infarc-
tion (MI) could have been detected 3.5 years before the 
ultimate market withdrawal of rofecoxib.

The case–time–control design resulted in earlier iden-
tification of MI risk compared with a more rigorously 
controlled active-comparator cohort design. However, 
further research is needed to validate the broader appli-
cability of this approach.

1 Introduction

Monitoring the safety of drugs in the postmarketing phase is 
crucial for identifying uncommon yet serious adverse events 
that may not have surfaced during premarketing clinical tri-
als [1]. These adverse events can have a significant impact, 
as was seen in the international Vioxx controversy [2], where 
a rapid uptake [3] and a 5-year gap between marketing and 
withdrawal of rofecoxib due to safety concerns [4, 5] caused 
thousands of adverse cardiovascular events [6]. Undetected 
safety issues can arise due to the rarity of adverse effects, 
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which may not occur in sufficient numbers within the limited 
sample size of a phase 3 clinical trial or because certain sub-
populations, such as older individuals, are excluded from the 
trial in which the adverse effects are more likely to occur [1, 
7]. In such cases, epidemiological studies provide the best 
alternative to trials in generating evidence for clinicians and 
regulatory bodies.

Conventional postmarketing surveillance has mainly 
relied on the systematic review of spontaneous reports of 
adverse drug reactions. This is highly problematic due to 
several well-established limitations to this system, hinder-
ing timely detection of many adverse events or leaving 
them unrecognized altogether [8, 9]. Still, the cornerstone 
of drug safety surveillance, the analysis of spontane-
ous reporting, remains largely unchallenged. Other data 
sources, such as large administrative healthcare databases, 
can provide a good demonstration of how the drugs are 
being used in ‘real-world’ settings and, thus, can be used 
for near real-time sequential safety surveillance of drugs 
as an alternative approach to traditional reporting-based 
pharmacovigilance. Similar approach has been previ-
ously used by Sentinel System [10] and others [11–13]. 
To build and empirically test this prospective drug safety 
monitoring setup, we performed sequential monitoring of 
rofecoxib use, as has previously been done by others [14, 
15], and its associated risk of cardiovascular outcomes 
using the case–time–control and cohort study designs.

2  Methods

We used Danish population-based health registers to 
examine the association of rofecoxib use with cardiovas-
cular outcomes during the study period from June 1999 to 
August 2004, using case–time–control and cohort study 
designs. We included patients who were aged 18 years or 
above and had no history of cardiovascular disease prior 
to June 1999. A protocol was registered and made pub-
licly available prior to the commencement of any statisti-
cal analysis (https:// osf. io/ va3yj).

2.1  Data Sources

Danish healthcare registers provide some of the finest 
sources of data for epidemiological research worldwide 
[16]. Both the Danish National Prescription Registry [17] 
and the Danish National Patient Register [18] are known 
to provide high-quality data recorded since the year 1995 
and 1977, respectively. The Danish National Prescription 
Registry contains all data on prescription drugs redeemed 
at the community pharmacies in Denmark. The data include 
the name, dose, and quantity of the drug dispensed as well 

as the date of dispensing. The registry utilizes the Ana-
tomical Therapeutic Chemical (ATC) classification system 
developed by World Health Organization [19]. The Dan-
ish National Patient Register contains data on all hospital 
admissions (nonpsychiatric) since 1977 and on all outpatient 
contacts since 1995. Since 1994, all diagnoses are coded 
according to International Classification of Diseases, Tenth 
Revision (ICD‐10). Furthermore, we used Central Per-
son registry [20], which has a civil registry number (CPR 
number), a unique identifier, assigned to the residents of 
Denmark since 1968. The data linkage was enabled by an 
encrypted CPR number and was performed by Statistics 
Denmark [21]. The data availability lag in the Danish con-
text is typically around 1–2 months.

2.2  Case–Time–Control Analysis

This sequential monitoring study was conducted with 
interim analyses and a final analysis to assess the incremen-
tal evidence as the data accumulated. Each interim analysis 
added 6 months of data from January 2000 until June 2004. 
The final analysis utilized additional 3 months of data until 
the withdrawal of rofecoxib in September 2004 (Fig. 1). To 
evaluate the association of rofecoxib use with MI, ischemic 
stroke, and all-cause mortality, we used a case–time–con-
trol design; a ‘self-controlled’ study design that utilizes a 
within-person comparison at different time periods [22]. 
Like the case–crossover design, the case–time–control 
design is robust to time-invariant confounders [22, 23]. 
The case–crossover design was devised to study acute 
effects with short-term exposure [24] but does not account 
for exposure time trends [25]. By including a nondiseased 
control group in a case–time–control design, one can adjust 
for exposure time trends [25]. Unlike case–control studies, 
controls in the case–time–control design serve only to adjust 
for the bias introduced by the temporal trend in the exposure 
prevalence during a study period. These exposure trends are 
particularly strong for newly marketed drugs [26]. The target 
population in the case–time–control design is a subset of 
those not immune to the outcome. From the study cohort, 
we identified all the incident cases of MI, ischemic stroke 
and all-cause death after June 1999 until August 2004. The 
index date was when the person received an incident diagno-
sis of MI or ischemic stroke, or the date of death. Each case 
subject was matched to five control subjects by age, sex, and 
calendar time, and each control was assigned the same index 
date as their matched case.

2.2.1  Exposure Ascertainment

Rofecoxib exposure was identified using rofecoxib prescrip-
tions registered in the Danish National Prescription Registry 
[17]. We assessed exposure status during predefined time 

https://osf.io/va3yj
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windows prior to the date of the outcome with a width of 
60 days. This duration was selected based on the number of 
dispensed tablets in the redeemed prescriptions, which in 
most cases was more than 30. We set the focal window to 
day −1 to −60 relative to the index date. We also applied 
washout and reference windows, each having the width of 60 
days (Fig. 2). A washout window was used to avoid carry-
ing over the effects of prior medication exposures or use of 
minor stockpiled supplies. Up to three reference windows 
were used, depending on the calendar time of the case. To 
allow room for rofecoxib exposure in at least one of the ref-
erence windows, we included only outcomes occurring 180 
days or more (focal, washout, and one reference window) 
after the market launch.

2.2.2  Study Outcomes

Cases of MI and ischemic stroke were identified as discharge 
diagnoses registered in the Danish National Patient Register 
[18]. The primary outcomes of interest included fatal and 
nonfatal cardiovascular or cerebrovascular events, includ-
ing MI and ischemic stroke (see online material, Table 1 for 
ICD-10 codes). The outcome codes have been previously 
validated in the Danish cohort [27, 28]. All-cause mortality 
was included as a secondary endpoint. The composite out-
come included all three: MI, stroke, and all-cause mortality. 
The day of diagnosis or death in the registers was used as 
the index/outcome date.

2.2.3  Statistical Analyses

We performed sequential analyses adding 6 months of data 
from each monitoring period throughout the 5-year study 
period. To avoid bias from exposure autocorrelation within 
multiple reference windows [29], we used the Mantel–Haen-
szel (MH) method to calculate odds ratios (ORs) with 95% 
compatibility intervals (CIs) for the associations between 
rofecoxib use and MI, ischemic stroke, and all-cause mor-
tality. To reduce variance that can arise from small sample 
sizes, a weak Bayesian shrinkage was applied throughout 
[30]. A normal prior distribution was used for the log rela-
tive risk (log RR), with a mean of 0 and variance of 0.5, 
corresponding to an OR of 1.0 and a 95% CI of 0.25–4.00. 
The case–time–control design for this study is illustrated 
in Fig. 2.

2.2.4  Sensitivity Analyses

Sensitivity analyses were performed where we changed the 
width of focal, washout, and reference windows to 30 days 
for cases and matched controls. A 30-day focal window was 
chosen on the basis of the observation that some individu-
als redeemed rofecoxib prescriptions in smaller quantities 
(fewer than 30 tablets). We also performed a subgroup analy-
sis by stratifying on rofecoxib dose (12.5 mg and 25 mg).

2.3  Cohort Analysis

We further performed a sequential cohort analysis for 
comparison using the active comparator, new user 

Fig. 1  Distribution of time periods for the sequential analysis of rofecoxib from January 2000 to September 2004
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(ACNU) cohort design [31]. Ibuprofen was used as an 
active comparator. This prospective monitoring study was 
conducted with similar time periods of interim and final 
analysis as the case–time–control analysis. We used high-
dimensional disease risk scores (hdDRS) [32] to adjust 
for confounding. DRS is a prognostic summary score 
that summarizes variable associations with outcomes of 
interest [33]. Unlike propensity scores (PS), which mod-
els physicians’ behavior or clinical practice (who is pre-
scribed what), DRS models biology (what conditions pre-
dispose individuals to the outcome), which is more stable 
over time. In the case of newly marketed drugs, one would 
expect clinical practice to change rapidly, hence making 
a good case for using DRS [34]. The development of the 
hdDRS model involved empirical covariate identification, 
covariate prioritization or ranking, and model specification 
including covariate selection. We used historical cohort 
data from 1995–1999, i.e., prior to rofecoxib market-
ing, to estimate DRS on the basis of 60-day follow-up of 
initiators of ibuprofen. Historical controls are useful for 
DRS model fitting, particularly in pharmacoepidemiologic 
studies with newly introduced or evolving treatments [35]. 
The outcome in the DRS model was a composite of MI 
and ischemic stroke. We used all available prescription 

and diagnosis data (including prescriptions used to define 
existing medical conditions) to obtain a set of variables. 
Covariate prioritization was performed on the basis of the 
log-likelihoods from logistic regression, which assessed 
the association of each variable with the study outcomes 
(dependent variable). Based on the strength of association, 
we selected the 50 covariates that were the most likely to 
be associated with the study outcomes and included these 
in the hdDRS model. DRS were estimated using multivari-
able logistic regression. Based on the DRS, we matched 
each episode of rofecoxib use to up to four episodes of 
ibuprofen use (1:4), using nearest-neighbor matching with 
replacement. DRS matching was performed separately for 
each study period.

2.3.1  Follow‑up and Censoring

Incident users of rofecoxib and ibuprofen were followed 
for 60 days, corresponding to the focal window of the 
case–time–control design. Cohort entry was the date of 
first prescription of either rofecoxib or ibuprofen. A wash-
out window prior to the index date was used to ensure no 
previous use of either drug in the past 365 days. Ibuprofen 
episodes were censored if a rofecoxib prescription occurred 
during follow-up (i.e., during days 1–60 after the index 

Fig. 2  Illustration of case–time–control study design



Sequential Epidemiological Analyses of Real-World Data

date) and vice versa. Each patient was followed until the 
first occurrence of the study outcome (MI, ischemic stroke, 
or death due to any cause), after 60 days of follow-up, or 
until the end of the study period. Each patient entered the 
cohort only once.

2.3.2  Statistical Analyses

For the cohort analysis, we estimated the relative risks (RRs) 
with 95% CIs from the log-binomial regression model for 
each interim as well as for the final analysis to show the 
sequential change in effect estimates over time.

2.3.3  Sensitivity Analyses

Similar sensitivity analyses, as in the case–time–control 
study, were performed by using a 30-day follow-up time 
and a subgroup analysis by stratifying on dose (12.5 mg 
and 25 mg).

2.3.4  Post‑Hoc Analysis

We performed a post-hoc analysis where we used celecoxib 
as an active comparator for rofecoxib and performed 1:1 
DRS matching with replacement. Due to the anticipated lim-
ited availability of celecoxib users compared with ibuprofen, 
it was initially not considered a primary active comparator 
for rofecoxib.

2.4  Definition of Signal

The signal threshold was defined ad hoc based on  the 
strength of association. A threshold of OR or RR of 1.20 
and a lower limit of 95% compatibility interval above 1.00 
was chosen, as it was deemed practical for this study on the 
basis of the authors’ judgment. Following discussion, the 
authors agreed that 1.20 was an appropriate and meaningful 
threshold.

2.5  Multiple Comparisons

As this study aimed to evaluate how evidence evolved as 
data accumulated, we reported the results of each interim 
analysis to illustrate changes in effect estimates over time. 
We decided beforehand to continue the monitoring until the 
study period ended (September 2004) and did not perform 
sequential testing [36] at each interim analysis to determine 
if evidence was sufficient to stop monitoring. For routine 
implementation, however, adjustments for multiple compari-
sons should be applied, similar to sequential monitoring in 
randomized controlled trials [37, 38], where the aim is to 
make statistically defensible decisions about terminating a 
trial when outcomes can be reliably predicted.

2.6  Other

All analyses were conducted using R (version 4.2.2). In Den-
mark, studies based solely on register data do not require 
review or ethical approval.

3  Results

In the case–time–control analysis, a total of 44,077 cases 
of MI, 26,654 cases of ischemic stroke, and 236,905 cases 
of all-cause mortality were initially identified from January 
2000 to September 2004. After applying inclusion and exclu-
sion criteria, the number of cases was reduced to 43,917 for 
MI, 26,510 for ischemic stroke, and 236,052 for all-cause 
mortality. Finally, following the exclusion of patients with-
out discordant exposure status, the analyses included 1213 
cases of MI, 679 cases of ischemic stroke, and 10,314 cases 
of all-cause mortality. There were 6017, 3375, and 51,131 
matched time controls, having discordant exposure status, 
for MI, stroke, and all-cause mortality, respectively. The 
selection and distribution of cases and their matched time 
controls in study periods 1–10 are depicted in Fig. 3.

The case–time–control analysis provided an OR of 1.12 
(95% CI 0.99–1.27) for MI and 1.25 (95% CI 1.19–1.30) 
for all-cause mortality. However, no such association with 
ischemic stroke was observed (OR 1.00, 95% CI 0.85–1.19). 
For MI, the early estimate from study period 1 (OR 1.21, 
95% CI 0.75–1.97) was the least precise, with the preci-
sion improving gradually. We observed initial evidence of a 
potential association during study period 2 (OR 1.42, 95% 
CI 1.04–1.93), with the subsequent study periods consolidat-
ing the evidence (Fig. 4).

In the cohort study, we identified 1,314,272 users of 
rofecoxib or ibuprofen during the study period from Janu-
ary 2000 to September 2004. After applying inclusion and 
exclusion criteria, there were 128,117 new users of rofecoxib 
matched with 505,453 new users of ibuprofen (Table 1). 
Figure 5 shows the selection and proportion of rofecoxib 
and ibuprofen users in the study periods 1–10. There was a 
steady increase in the use of rofecoxib from study periods 1 
to 5, and then it decreased sharply in the subsequent study 
periods. 

In the cohort analyses, a RR of 1.31 (95% CI 1.10–1.56) 
was seen for MI (Fig. 4). The earliest evidence of associa-
tion was seen in the seventh study period (RR 1.22, 95% CI 
1.02–1.47), with later study periods further consolidating 
the evidence (Fig. 4). The risk estimates showed gradual 
increase in strength and precision with increasing number of 
patients in each study period. Rofecoxib use was also associ-
ated with higher risk of all-cause mortality (cumulative RR 
1.53, 95% CI 1.45–1.61), but no association with ischemic 
stroke was seen (cumulative RR 1.11, 95% CI 0.97–1.28).
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During the sensitivity analyses, a cumulative OR of 1.29 
(95% CI 1.11–1.49) for MI was seen in case–time–control 
study, where the length of focal, washout, and reference win-
dows was reduced to 30 days (Fig. 6). When the follow-up 
time was reduced to 30 days in the cohort study design, no 
noteworthy association between the rofecoxib use and risk 
of MI was seen, except for study period 8 and 9 (Fig. 6). 
When stratified on dose, we found an increased risk of MI 
in patients using rofecoxib at a dose 25 mg or above (Fig. 7) 
in both case–time–control (RR 1.37, 95% CI 1.17–1.61) and 
cohort study designs (RR 1.32, 95% CI 1.04–1.67). Use of 
rofecoxib at 12.5 mg dose demonstrated a protective effect 
against MI (see online material, S2) in case–time–control 
design (RR 0.78, 95% CI 0.64–0.95), while no associa-
tion was seen in the cohort study design (RR 1.27, 95% CI 
0.97–1.64; see online material, S3).

In the post-hoc analysis with celecoxib as an active com-
parator, the cumulative RR of 1.05 (95% CI 0.86–1.28) and 
1.20 (95% CI 0.91–1.58) were seen for MI and ischemic 
stroke, respectively (see online material, S6). Other results 
for all-cause mortality and composite outcome are provided 
as a supplementary material (see online material, S1, S4, 
S5).

4  Discussion

We describe a prospective drug safety monitoring system 
using a working example of cardiovascular adverse effects of 
rofecoxib. The monitoring system successfully identified the 
associations between use of rofecoxib and increased risk of 
MI and all-cause mortality using two different study designs. 
This highlights the importance of surveillance approaches 
beyond traditional spontaneous reporting systems and lev-
eraging healthcare databases and pharmacoepidemiologi-
cal methodologies to enhance drug safety monitoring. Our 
results agree with the results of previous observational stud-
ies and meta-analyses [39–45]. As expected for the newly 
marketed drug, such as rofecoxib, the estimates were impre-
cise and unstable during the earlier study periods in both 
study designs [26], but the precision improved as sample 
size increased with each interim analysis.

The main strength of this study lies in the utilization of 
Danish healthcare registers that provide some of the finest 
sources of data for the epidemiological research worldwide 
[16]. The Danish National Prescription Registry [17], Danish 
National Patient Register [18], and Central Person registry 
[20] allowed the implementation of both case–time–control 

Fig. 3  Selection of cases and time controls for case–time–control study
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and active comparator new user cohort designs, for which 
nonavailability and selection of suitable controls and active 
comparators can otherwise be troublesome. Secondly, the 
study designs used were equipped with better confounder 
control techniques, such as the use of hdDRS-matched 
active comparators in the cohort design to reduce the effect 
of confounding.

The study also has some limitations. Firstly, we lacked 
the data on many socioeconomic and life-style factors, 
such as alcohol use, smoking, and body mass index (BMI), 
that are not available in Danish healthcare registers. We 
attempted to mitigate such confounding in two ways; in the 
case–time–control design, confounders that are stable within 
the focal and reference windows cancel out. For all prac-
tical purposes, the mentioned life-style factors (and their 

health effects) are stable over this short time range. In addi-
tion, we used an active comparator about which we could 
assume that the confounding structure would be largely 
similar. We therefore believe that our study is not affected 
by life-style confounding to any material degree. Secondly, 
the Danish national prescription registry only contains data 
on prescriptions redeemed at the community pharmacies. 
It lacks information on inpatient and over-the-counter drug 
use, which may have resulted in some exposure misclassifi-
cation. Furthermore, this study essentially addresses sensi-
tivity, indicating that such a system can detect unsuspected 
safety issues. However, we are unsure about specificity, i.e., 
whether this setup detects only true positive signals can-
not be determined from this study. Additionally, our results 
are contextual, based on the Danish setup. Using a larger 

Fig. 4  Sequential monitoring of rofecoxib use for myocardial infarc-
tion and ischemic stroke using case–time–control (A) and cohort 
study (B) designs. Study periods 1–10 correspond to ten sequential 
analyses conducted from January 2000 to September 2004. Each 

analysis adds 6 months of data, except for study period 10, which 
adds 3 months of data. The effect estimates (odds ratios or risk ratios) 
are cumulative and estimated at the end of each study period. , odds 
ratio (A) or risk ratio (B) with 95% compatibility interval; , null
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Table 1  Selected baseline characteristics of the study population before and after hdDRS matching.

Before hdDRS matching SMD After hdDRS matching

Rofecoxib use
N (mean or %)

Ibuprofen use
N (mean or %)

Rofecoxib use
N (mean or %)

Ibuprofen use
N (mean or %)

SMD

Individuals (N) 130,096 101,5411 128,117 505,453
Age, mean (SE) 62.29 (16.84) 46.01 (16.71) 0.971 61.49 (16.72) 61.21 (16.61) 0.01
Female sex 44,379 (34.1) 481,408 (47.4) 0.273 43,476 (33.9) 171,059 (33.8) 0.002
Drug use (past 1 year)
Sodium picosulfate 2277 (1.8) 2915 (0.3) 0.14 2096 (1.6) 3889 (0.8) 0.08
Metformin 2015 (1.5) 8816 (0.9) 0.06 1882 (1.5) 7988 (1.6) 0.01
Glibenclamide 958 (0.7) 3239 (0.3) 0.05 858 (0.7) 3763 (0.7) 0.01
Tolbutamide 369 (0.3) 1235 (0.1) 0.03 287 (0.2) 1351 (0.3) 0.01
Glipizide 522 (0.4) 1784 (0.2) 0.04 449 (0.4) 1954 (0.4) 0.01
Potassium chloride 13,579 (10.4) 25,700 (2.5) 0.32 12,664 (9.9) 37,967 (7.5) 0.08
Warfarin 2261 (1.7) 4642 (0.5) 0.12 2041 (1.6) 5107 (1.0) 0.05
Acetyl salicylic acid 11,429 (8.8) 30,623 (3.0) 0.24 10,499 (8.2) 41,886 (8.3) 0.003
Digoxin 4975 (3.8) 8566 (0.8) 0.19 4525 (3.5) 13,790 (2.7) 0.04
Glyceryl trinitrate 4755 (3.7) 9364 (0.9) 0.18 4115 (3.2) 11,659 (2.3) 0.05
Isosorbide dinitrate 1918 (1.5) 3203 (0.3) 0.12 1547 (1.2) 3979 (0.8) 0.04
Isosorbide mononitrate 2020 (1.6) 3439 (0.3) 0.12 1649 (1.3) 4132 (0.8) 0.04
Furosemide 14,452 (11.1) 28,146 (2.8) 0.33 13,508 (10.5) 40,046 (7.9) 0.09
Spironolactone 3049 (2.3) 5591 (0.6) 0.15 2807 (2.2) 7535 (1.5) 0.05
Atenolol 2151 (1.7) 7861 (0.8) 0.08 2022 (1.6) 8676 (1.7) 0.01
Amlodipine 6574 (5.1) 22,110 (2.2) 0.15 6234 (4.9) 25,374 (5.0) 0.007
Verapamil 2497 (1.9) 5949 (0.6) 0.12 2353 (1.8) 7801 (1.5) 0.02
Diltiazem 2083 (1.6) 4461 (0.4) 0.11 1731 (1.4) 5260 (1.0) 0.02
Captopril 652 (0.5) 2034 (0.2) 0.05 524 (0.4) 2149 (0.4) 0.003
Enalapril 3448 (2.7) 14,058 (1.4) 0.09 3257 (2.5) 15,339 (3.0) 0.03
Losartan 2913 (2.2) 7954 (0.8) 0.12 2671 (2.1) 8748 (1.7) 0.02
Bendroflumethazide 17,636 (13.6) 54,689 (5.4) 0.28 16,990 (13.3) 68,464 (13.5) 0.008
Finasteride 740 (0.6) 1936 (0.2) 0.06 673 (0.5) 2141 (0.4) 0.01
Desogestrol and ethinylestradiol 979 (0.8) 26,022 (2.6) 0.14 979 (0.8) 4281 (0.8) 0.009
Gestodene and estrogen 1587 (1.2) 46,631 (4.6) 0.20 1584 (1.2) 7726 (1.5) 0.02
Sulfamethizole 9903 (7.6) 44,398 (4.4) 0.13 9478 (7.4) 35,063 (6.9) 0.01
Allopurinol 2785 (2.1) 7797 (0.8) 0.11 2617 (2.0) 7724 (1.5) 0.03
Aspirin 7331 (5.6) 16,404 (1.6) 0.21 6801 (5.3) 23,159 (4.6) 0.03
Acetaminophen 32,234 (24.8) 50,877 (5.0) 0.57 31,320 (24.4) 79,470 (15.7) 0.21
Ketobemidone 5081 (3.9) 8240 (0.8) 0.20 4870 (3.8) 8051 (1.6) 0.13
Diazepam 9797 (7.5) 28,136 (2.8) 0.21 9511 (7.4) 29,233 (5.8) 0.06
Nitrazepam 5525 (4.2) 13,106 (1.3) 0.18 5396 (4.2) 22,025 (4.4) 0.007
Zopiclone 10,866 (8.4) 31,356 (3.1) 0.22 10,561 (8.2) 37,419 (7.4) 0.03
Zolpidem 7631 (5.9) 22,735 (2.2) 0.18 7381 (5.8) 22,095 (4.4) 0.06
Citalopram 7516 (5.8) 25,411 (2.5) 0.16 7230 (5.6) 24,437 (4.8) 0.03
Quinine 4606 (3.5) 8520 (0.8) 0.18 4424 (3.5) 12,997 (2.6) 0.05
Fenoterol and ipratropium bromide 2919 (2.2) 7782 (0.8) 0.12 2731 (2.1) 9117 (1.8) 0.02
Theophylline 1548 (1.2) 3733 (0.4) 0.09 1470 (1.1) 4424 (0.9) 0.02
Comorbidities
Type 2 diabetes mellitus 1654 (1.3) 5324 (0.5) 0.07 1318 (1.0) 4622 (0.9) 0.01
Transient cerebral ischemic attacks 327 (0.3) 917 (0.1) 0.03 181 (0.1) 643 (0.1) 0.004
Age-related cataract 1949 (1.5) 4381 (0.4) 0.10 1862 (1.5) 8152 (1.6) 0.01
Primary hypertension 2594 (2.0) 8102 (0.8) 0.10 2224 (1.7) 8361 (1.7) 0.006
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data source such as Sentinel [46] could fulfill signal criteria 
earlier, advocating for collaborative efforts in drug safety 
monitoring. Lastly, the signal threshold used was ad hoc; 

for routine implementation, a predefined threshold would 
in most cases have to be established.

In general, the effect estimates were more stable across 
study periods for the case–time–control study design than 

SMD, standardized mean difference; hdDRS, high-dimensional disease risk score; IHD, ischemic heart disease

Table 1  (continued)

Before hdDRS matching SMD After hdDRS matching

Rofecoxib use
N (mean or %)

Ibuprofen use
N (mean or %)

Rofecoxib use
N (mean or %)

Ibuprofen use
N (mean or %)

SMD

Angina pectoris 1693 (1.3) 4878 (0.5) 0.08 1474 (1.2) 4815 (1.0) 0.01
Chronic IHD 1709 (1.3) 3764 (0.4) 0.10 1399 (1.1) 3960 (0.8) 0.03
Atrial fibrillation 1787 (1.4) 3847 (0.4) 0.10 1543 (1.2) 4536 (0.9) 0.03
Heart failure 1417 (1.1) 2569 (0.3) 0.10 1169 (0.9) 3223 (0.6) 0.03
Sequelae of cerebrovascular disease 330 (0.3) 740 (0.1) 0.04 93 (0.1) 211 (0.0) 0.01
Atherosclerosis 797 (0.6) 1774 (0.2) 0.07 558 (0.4) 1549 (0.3) 0.02
Medical observation for suspected diseases 10,938 (8.4) 53,227 (5.2) 0.12 10,349 (8.1) 34,534 (6.8) 0.04

Fig. 5  Selection of rofecoxib and ibuprofen users for cohort study
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for the cohort design. The earliest evidence of the associa-
tion between rofecoxib use and risk of MI could be seen at 
the end of study period 2 for the case–time–control design. 
Hence, using this monitoring setup, the association could 
be identified as early as 1.5 years after the rofecoxib launch, 
corresponding to 3.5 years before its ultimate market with-
drawal. For the cohort study design, the earliest association 
between rofecoxib use and risk of MI was seen in study 
period 7 (RR 1.22, 95% CI 1.02–1.47). Our monitoring 
study did not find any association of rofecoxib use with risk 
of ischemic stroke in both case–time–control (cumulative 
OR 1.00, 95% CI 0.85–1.19) and cohort (cumulative RR 
1.11, 95% CI 0.97–1.28) study designs.

The sensitivity analyses provided a wider picture of 
the cardiovascular effects of rofecoxib. Firstly, when the 

length of the focal, washout, and reference windows in 
case–time–control was reduced to 30 days, a stronger asso-
ciation of rofecoxib use and risk of MI could be seen. Some 
studies have suggested that the cardiovascular adverse effects 
occurred after transient rofecoxib use and could appear 
within the first few weeks of use [47, 48]. Hence, explo-
rations of varying focal windows may help elucidate time 
periods where risk is elevated. Secondly, use of rofecoxib 
at 25 mg or above showed increased risk of MI (1.4 times) 
in case–time–control and use at a dose of 12.5 mg showed 
no risk in both study designs. The counter argument could 
be that patients receiving higher doses would be inherently 
frailer or have underlying health conditions predisposing 
them to cardiovascular events. This is one of the examples 
where self-controlled designs, such as case–time–control, 

Fig. 6  Sensitivity analyses. Sequential monitoring of rofecoxib use for 
myocardial infarction and ischemic stroke using a 30-day focal win-
dow and follow-up time in case–time–control (A) and cohort study (B) 
design, respectively. Study periods 1–10 correspond to ten sequential 
analyses conducted from January 2000 to September 2004. Each analysis 

adds 6 months of data, except for study period 10, which adds 3 months 
of data. The effect estimates (odds ratios or risk ratios) are cumulative 
and estimated at the end of each study period. , odds ratio (A) or risk 
ratio (B) with 95% compatibility interval. , null
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may provide an advantage over a cohort design. With within-
person comparison and shorter duration of focal and refer-
ence windows, one would not expect a substantial change in 
patients’ frailty and other subject specific confounders that 
predispose the outcome.

Compared with the Adenomatous Polyp Prevention on 
Vioxx (APPROVe) trial (RR 2.65, 95% CI 1.21–5.75), our 
case–time–control (OR 1.12, 95% CI 0.99–1.27) and cohort 
design (RR 1.32, 95% CI 1.11–1.56) identified a weaker 
association of rofecoxib use and the risk of MI. However, 
the RR obtained from the trial had a much larger uncer-
tainty due to small number of events. In addition to statisti-
cal uncertainty, the divergence between the results of this 
study and those of the APPROVe trial can also be explained 

by differences in the duration of follow-up. The current 
study had a relatively short follow-up period of only 60 
days, whereas the trial follow-up spanned over a year. By 
focusing on short-term exposure–outcome associations, the 
case–time–control design may not fully capture the long-
term impact and dynamics of the intervention or treatment, 
thus leading to differing results compared with a study with 
an extended follow-up period. Furthermore, the trial utilized 
only a 25 mg dose of rofecoxib, whereas the present study 
included both the 12.5 mg and 25 mg dose. As seen in the 
sensitivity analyses, the dose of 12.5 mg was associated with 
a reduced risk of MI. This could be one of the reasons for 
the lower estimates in the main analyses.

Fig. 7  Sensitivity analyses. Sequential monitoring of rofecoxib use 
for myocardial infarction and ischemic stroke using case–time–con-
trol (A) and cohort study (B) designs for patients in the dose category 
of 25 mg or above. Study periods 1–10 correspond to ten sequential 
analyses conducted from January 2000 to September 2004. Each 

analysis adds 6 months of data, except for study period 10, which 
adds 3 months of data. The effect estimates (odds ratios or risk ratios) 
are cumulative and estimated at the end of each study period. , odds 
ratio (A) or risk ratio (B) with 95% compatibility interval. , null
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The cohort study design has been the primary choice for 
the sequential monitoring of newly marketed drugs [11–13, 
49]. This design is unaffected by the bias induced by time 
trends in exposure but could be affected by other sources of 
bias. For instance, the cohort study design does not, as the 
case–time–control design, account for time-stable unmeas-
ured confounders. Moreover, confounding by indication is 
a concern in any observational study design [50]. We used 
an active comparator to mitigate the effects of confounding 
by indication. The inability of the cohort design to identify 
an association in earlier study periods in this study should 
not limit its use for prospective safety monitoring of drugs. 
This design should still be a choice for future monitoring 
of new drugs that will almost surely have slower uptake, 
for less commonly observed outcomes, and when the use 
of a self-controlled design would not be appropriate, e.g., 
when studying delayed outcomes such as cancer. Although 
the use of DRS is appropriate in the case of newly marketed 
drugs, studies suggest that DRS methods yield higher type 
1 error rates than PS methods [51]. Also, using DRS for 
signal detection programs would be impractical, as it would 
require modeling for each evaluated outcome. Hence, further 
exploration is required if DRS methods are to be used in 
routine signal detection.

There are instances in which the conventional cohort 
study is not feasible, for example, if confounding by indi-
cation remains a significant concern and there is a lack of 
appropriate active comparators available [52]. Therefore, 
we showed the case–time–control design to be an alter-
native approach for the sequential safety monitoring of 
drugs. This design is expected to provide a better control 
over the temporal trend of exposure than the case–cross-
over design [26], although it under other circumstances 
can be more biased than the simple case–crossover [53], 
which is an important consideration in the safety and 
effectiveness studies on newly marketed drugs. By focus-
ing on each individual case and their own exposure his-
tory, the case–time–control design could be considered 
as an efficient means of studying rare outcomes that may 
occur infrequently in the population. The detectable sig-
nal for MI after about 2 years of rofecoxib marketing 
was previously reported [54] on the basis of sequential 
monitoring using the cohort study design. Similar find-
ings using the case–time–control design in our study sug-
gest that prospective drug safety monitoring using this 
design, or self-controlled designs in general, may have 
major public health benefits, given that safety monitoring 
programs using the cohort analysis may not be employed 
regularly owing to a lack of efficiency and rare outcomes. 
Both of these limitations could be addressed using the 
case–time–control design.

5  Conclusions

Our prospective drug safety monitoring setup using the 
case–time–control design effectively showed that the risk 
of MI could have been detected as early as after 1.5 years 
of rofecoxib launch or 3.5 years before its ultimate mar-
ket withdrawal. Although the case–time–control design 
resulted in earlier identification of MI risk compared with 
a more rigorously controlled active comparator cohort 
design, these findings are context specific and should not 
be interpreted as conclusive evidence favoring one design 
over another. This study demonstrates the potential for the 
self-controlled design as an alternative for the safety moni-
toring of newly marketed drugs where the cohort design is 
not feasible. However, further research is needed to vali-
date the broader applicability of this approach.
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